Modeling-based determination of physiological parameters of systemic VOCs by breath gas analysis: a pilot study.

نویسندگان

  • Karl Unterkofler
  • Julian King
  • Pawel Mochalski
  • Martin Jandacka
  • Helin Koc
  • Susanne Teschl
  • Anton Amann
  • Gerald Teschl
چکیده

In this paper we develop a simple two compartment model which extends the Farhi equation to the case when the inhaled concentration of a volatile organic compound (VOC) is not zero. The model connects the exhaled breath concentration of systemic VOCs with physiological parameters such as endogenous production rates and metabolic rates. Its validity is tested with data obtained for isoprene and inhaled deuterated isoprene-D5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling-based determination of physiological parameters of systemic VOCs by breath gas analysis, part 2.

In a recent paper (Unterkofler et al 2015 J. Breath Res. 9 036002) we presented a simple two compartment model which describes the influence of inhaled concentrations on exhaled breath concentrations for volatile organic compounds (VOCs) with small Henry constants. In this paper we extend this investigation concerning the influence of inhaled concentrations on exhaled breath concentrations for ...

متن کامل

Physiological Modeling for Analysis of Exhaled Breath

Due to its broad scope and applicability, breath gas analysis holds great promise as a versatile framework for general bio-monitoring applications. As a biochemical probe, volatile organic compounds (VOCs) in exhaled breath are unique in the sense that they can provide both non-invasive and continuous information on the metabolic and physiological state of an individual. Apart from diagnostics ...

متن کامل

Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study.

BACKGROUND Analysis of exhaled breath, especially of volatile organic compounds (VOCs), is of increasing interest in the diagnosis of lung cancer. Compared with other methods of breath analysis, ion mobility spectrometry (IMS) offers a tenfold higher detection rate of VOCs. By coupling the ion mobility spectrometer with a multicapillary column as a pre-separation unit, IMS offers the advantage ...

متن کامل

Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of lung cancer patients – Results of a pilot study

Background: Analysis of exhaled breath, especially of volatile organic compounds (VOCs), is of increasing interest in the diagnosis of lung cancer. Compared to other methods of breath analysis, ion mobility spectrometry (IMS) offers a ten-fold higher detection rate of VOCs. By coupling the ion mobility spectrometer with a multi-capillary column as a pre-separation unit, IMS offers the advantage...

متن کامل

Physiological modeling of isoprene dynamics in exhaled breath.

Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of breath research

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2015